

Course Number : PHYS 343	Course Title : Classical Mechanics
Required / Elective : Required	Pre / Co-requisites : -
Catalog Description: Elements of Newtonian mechanics; motion of particle; motion of system of particles; motion of rigid body; gravitation; central force problems; special theory of relativity. Principles of least action; Lagrange's equations of motion; Hamilton's equations of motion; theory of small vibrations.	Textbook / Required Material : S. T. Thornton & J. B. Marion, <i>Classical Dynamics of Particles and Systems</i> , Brooks Cole, 5 th ed., 2003.

Course Structure / Schedule : (3+0+2) 4 / 8 ECTS

Extended Description :

Matrices, vectors and vector calculus. Newtonian mechanics. Oscillations. Nonlinear oscillations and chaos. Gravitation. Calculus of variations. Hamilton's principle. Lagrangian and Hamiltonian mechanics. Central force motion. Dynamics of systems of particles. Noninertial frames. Rigid body dynamics. Coupled oscillations. Special relativity.

Computer usage:

Design content : None	Linking	to	course	web	site	for	homeworks	and
	announcements, and to Course Online for homework							
	and exan	nd exam solutions. Optional use of Java applets.						

Course Learning Outcomes [relevant program outcomes in brackets]:

On successful completion of this course students will be able to

- 1. demonstrate a conceptual understanding of the fundamental laws of classical mechanics [1, 2];
- 2. recognize how these physical laws can be applied to solve a variety of problems [6];
- 3. analyze the properties of translational and rotational motion using Lagrangian and Hamiltonian dynamics [1, 2];
- 4. employ calculus of variations and vector calculus to solve physical problems[1, 2];
- 5. describe planetary motion [1, 2];
- 6. explain small oscillations of dynamical systems [1];
- 7. compare relativistic and non-relativistic motion [1];
- 8. compare motion in inertial and non-inertial frames of reference [1];
- 9. discuss how physics is relevant to the world around them [5, 10].

Recommended reading

L. D. Landau & E. M. Lifshitz, Mechanics, Butterworth-Heinemann; 3 edition, 1976.

G. R. Fowles & G. L. Cassiday, Analytical Mechanics, Brooks Cole; International Ed., 2004					
Teaching methods					
Thee feetures and two problem sessions per week, pre readings and nome work problems.					
Assessment methods (Related to course outcomes):					
Two mid-term examinations, a final examination, weekly homework assignments, and quizzes.					
Student workload.					
Student workload.					
Preparatory reading	45 hrs				
Lectures, discussions	45 hrs				
Exercise sessions	28 hrs				
Homework	45 hrs				
Independent work	32 hrs				
Exams	5 hrs				
TOTAL					
Prepared by : Rahmi Guven, 06.02.2010	Revision Date :				